ARE TEXAS DIAGNOSTICIANS GUIDED TO EVIDENCE-BASED PRACTICES IN ASSESSMENT? AN ANALYSIS OF STATE GUIDANCE DOCUMENTS

Mahnaz Pater-Rov

This literature review examined the alignment of Texas state guidance documents with evidence-based practice (EBP) for assessment of specific learning disability (SLD). The review explored research-based models of SLD identification, reactions in the field to these models, and characteristics of EBPs for assessment. Texas policy documents on SLD identification were then analyzed for their adherence to empirically supported assessment practices. The review found that, while Texas guidance documents have added elements of EBP over time, many inconsistencies remain. The findings of this literature review and document analysis have implications for policymakers as they design guidance for practitioners who need consistent messages in the state guidance documents aligned with EBPs in assessment to support accurate and equitable SLD identification.

Keywords: specific learning disability, assessment, educational diagnosticians, evidence-based practices, interpretive models, Texas special education guidance

The accurate identification of specific learning disability (SLD) is essential for ensuring that students receive appropriate educational instruction and accommodations; however, the methods used to assess and diagnose SLD have long been debated with various interpretive models emerging over time (Aaron et al., 2008; Dehn, 2013; Dombrowski, 2004; Flanagan et al., 2010; Fletcher et al., 2004; Fuchs et al., 2002; Hale et al., 2010; Kirk & Bateman, 1962; Pennington, 2006; Schultz & Stephens, 2015; Wagner et al., 2022). This literature review is divided into three parts that (a) examines the ongoing debate and critiques of various interpretive models in SLD assessment (b) highlights the guidance toward evidence-based practice (EBP) in SLD assessment from both a policy and research perspective, and (c) reviews Texas guidance documents that play a key role in how diagnosticians use their professional judgment to interpret assessment data in real-world educational settings. If recommendations for changes in the consistency of messages in these documents are amended to use language aligned with EBPs in assessment, the revised guidance will have the potential to help diagnosticians interpret their data in a way that will improve their diagnostic precision.

Part 1: Models of SLD Identification and the Criticisms They Have Received

The Individuals with Disabilities Education Act (IDEA; 2024) allowed for two models of SLD identification: (a) a significant difference between IQ and achievement, and (b) response to intervention (RTI); however, it also allowed for any research-based process. IDEA (2004) used

the words, "patterns of strengths and weaknesses in performance, achievement, or both" (34 C.F.R. § 300.309(a)(2)(ii)). Although these words were not in reference to a third model of SLD identification, researchers have referred to these words as evidence of the need for a third model of SLD, referred to as patterns of strengths and weaknesses (PSW). Today, policymakers categorize states according to which of the three models they allow for SLD identification (Benson et al., 2020) but fail to recognize other models of SLD identification that are not mentioned such as hybrid methods and component-based methods. A review of the literature revealed at least 10 proposed models for determining SLD, which is far more than the three (IQ-achievement discrepancy, RTI, and PSW) that policy makers use to categorize states.

Low Achievement Models

Research has grown in ways that could not have been predicted at the time IDEA was written in 2004. A review of existing literature provides evidence that several models that are not considered PSW or RTI models are described in research. The first of these was the developmental academic underachievement model (Dombrowski et al., 2004), which describes an academic underachievement diagnosed in the developmental period that is not an intellectual disability. This model was based on the belief that a parsimonious approach adds validity to the assessment process (Dombrowski et al., 2004). In this model, cognitive tests are not required except to rule out intellectual disability. In response, Mather and Gregg (2006) argued that the goal of the research should be to clarify but not eliminate the construct of the learning disability as a disorder rather than a delay because the central component of all theories of reading disabilities is the specific linguistic dimensions that form the essence of the disability.

Fletcher et al. (2004) introduced a similar model that combined psychoeducational achievement tests with an RTI approach to create a hybrid model. Unlike the developmental academic underachievement model (Dombrowski et al., 2004), this model was based on the belief that a child's unexpected response to otherwise effective instruction was evidence of the constitutional factors that caused learning disabilities. This model did not require an IQ test, offered the benefits of aligning with No Child Left Behind, helped practitioners establish effective interventions, and addressed the need for early intervention (Fletcher et al., 2004). Although this model differed from the RTI model because it required the use of psychoeducational achievement testing in combination with RTI data rather than RTI data alone, policy makers appear to use the term *RTI method* to refer to the hybrid model.

The critique of this model was embodied by Kranzler et al. (2020) who worried that using a hybrid model would fundamentally alter the traditional conceptualization of an SLD and lead diagnosticians to identify children who were failing because of environmental risks rather than a genetic risk. Kranzler et al. (2016) inspired the creation of PSW methods because many researchers similar to Kranzler et al. believed that differences in IQ factor scores were evidence that learning disabilities were caused by specific isolated cognitive weaknesses that could be measured by psychoeducational tests. Mather and Schneider (2023), for example, argued that specificity and unexpectedness have traditionally been operationalized using cognitive and achievement testing and fundamental to the diagnosis of dyslexia. They raised concern that excluding IQ testing would lead practitioners to ignore years of research in the field.

A Multideficit and Component Model

While researchers similar to Fletcher et al. (2004) continued to discuss the benefits of an SLD identification assessment process that would provide utility in the context of U.S. policy, others continued to focus on the cognitive and neurological causes of learning disabilities. Pennington (2006) established a multideficit rather than single-deficit model of learning disorders and described the multideficit model as viewing learning disorders as multivariate and on a continuum rather than originating from a single cause. As researchers learned about the potential benefits of cognitive correlates of dyslexia such as rapid naming and phonological awareness for early identification of those in need of intervention, Aaron et al. (2008) posited a component-based model of dyslexia identification. While this model specifically applied only to a disability in basic reading, it also added to the literature on the research-based models for the identification of at least one of the learning disability categories. Since that time, Catts et al. (2017) have evaluated the predictive nature of each of the components and found that no single component or combination of three components was sufficient to predict dyslexia in students when assessed in kindergarten and then followed to the end of second grade.

Critiques of PSW Models

The decade of the 2010s was one in which SLD took a turn back to IQ tests by examining the cognitive deficits believed to cause learning disabilities (Hale et al., 2010). Although over 50 researchers authored an article in support of the evidence of significant variance/discrepancies in cognitive abilities for the presence of a learning disability (Hale et al., 2010), it appears the number of authors writing articles created a false sense of evidence for discrepancy methods because several studies, starting with Stuebing et al. (2012), found that models utilizing the factor analysis of cognitive processes had poor technical adequacy. Stuebing et al. found the discrepancy models only identified 1–2% of the population, but the evidence in the research was that prevalence for dyslexia alone should be much higher (Fletcher & Miciak, 2019; Shaywitz et al., 1992), meaning many children were denied special education services under these models due to a lack of specific discrepancies on IQ tests.

Despite the evidence by Stuebing et al. (2012), PSW models continued to try to fill the gap that RTI could not by attempting to determine the cognitive processes that could identify the cause of a learning disability. Hale et al.'s (2010) article spurred several PSW models, including a psychological processes analysis model (Dehn, 2013), the dual discrepancy/consistency model (Flanagan et al., 2010), and the core-selective evaluation process (Schultz & Stephens, 2015). The authors of PSW models used effect sizes of correlations between standardized tests to establish evidence of cognitive constructs (Woodcock et al., 2017), and while Miller et al. (2016) were busy attempting to establish the greatest evidence for each of the PSW models, other researchers (Fletcher & Miciak, 2019; Fletcher et al., 2011; Kranzler et al., 2016; Maki et al., 2017; Miciak et al., 2014) were determined to establish a lack of evidence for these models. Even the authors of the core selective evaluation process model (C-SEP) (Schultz & Stephens, 2015) who aimed to improve upon the other PSW models encouraging a focus on integrating data-based decisions with both policy and guidance from test publishers were not immune to criticism. Benson et al. (2018) urged diagnosticians to "eschew" (p. 17) using the C-SEP model because the authors of the model did not provide evidence of diagnostic utility to support its claim that the model helps practitioners improve their diagnostic precision. Schneider and Kaufman (2016) acknowledged that even though theoretical models using IQ tests could be characterized as "mostly backed by rhetoric in which assertions are backed by citations of other scholars making assertions backed by citations of still other scholars making assertions" (p. 8), the use of cognitive assessments in the diagnosis and treatment of learning disabilities was "backed by sound logic, persuasive reasoning, deep ethical intuitions, fine-tuned professional insights, vivid personal experiences, and a large body of indirect scientific evidence" (p. 8).

Part II: Guidance Toward EBPs in SLD Assessment

Although IDEA only requires a research-based practice for the identification of SLD, the Every Student Succeeds Act (2015) emphasized the importance of EBPs. The Supreme Court case *Endrew F. v. Douglas County School District RE-I* (2017) also raised the expectation of an IEP from some educational benefit (*Board of Education v. Rowley*, 1982, p. 200) to a requirement that the school create goals that are "reasonably calculated for the child to make progress, appropriate in the light of the child's circumstances" (*Endrew F. v. Douglass County School District*, 2017, p. 11). As a result, the importance of establishing the evidence of models of assessment became of even greater onus on the researchers. EBPs in assessment raise the expectation that interpretive models should extend beyond simply satisfying a mere "working" definition of a disability (Reid, 2001, p. 1) because they help improve learning outcomes by better identifying students who need support and the kind of support they need.

EBPs in SLD Assessment Models

Dombrowski et al. (2021) described the framework of EBP grounded by Ysseldyke et al. (1984). Ysseldyke et al. (2023) described EBPs of assessment as the "assumption that tests are commonly administered in the expectation that some benefit will be realized from the interpretation and use of the scores intended by the test developers" (p. 102); they explained that the "purpose of validation is to indicate whether specific benefits are likely to be realized" (p. 102) and that evidence does not depend on just how the test is designed but also on what the providers who interpret the tests do with the information.

Fletcher et al. (2002) first used the term *evidence-based evaluation* to refer to the classification of learning disabilities. They demonstrated that classification hypotheses that used discrepancy and exclusion have weak validity, often perpetuating inaccurate and outdated assumptions about SLDs (Fletcher et al., 2002). Fletcher et al. (2005) built on this concept by explaining that children with severe reading problems will show increasingly flat profiles across processing measures because all measures are moderately correlated. They concluded that a hybrid model of low achievement and RTI posed the best evidence for a model of assessment of SLD (Fletcher et al., 2005).

Burns et al. (2017) further developed the concept of an evidence-based assessment as a practice that directly links assessment to intervention. Burns (2016) defined evidence in assessment in terms of the assessment's utility for improving intervention effectiveness. After conducting a literature review to determine errors in thinking of school psychologists and evaluators when making judgments in evaluations, Lilienfeld et al. (2012) concluded that a practitioners' best safeguard against several errors in thinking was their application of scientific thinking. As standards for EBPs were established, practitioners began to analyze their theoretical practices through the lens of scientific thinking and ethical decision-making that resulted in

recommendations to abandon old practices (e.g., Benson et al., 2018; Dombrowski et al., 2021; Kranzler et al., 2016). Dombrowski (2020) proposed a framework for evidence-based assessment that required (a) scientific decision making and critical thinking, (b) evidence-based instrument selection, (c) expert clinical judgment, and (d) a well-written and aesthetically appealing report. This framework provides higher expectations for EBPs in assessment over the researched-based models that are allowed under IDEA (2004).

Talbott et al. (2023) explained that research in EBPs in assessment is best characterized by curriculum-based measurement research. Talbott et al. broke EBPs in assessment into three key processes that include the following:

- curriculum-based measurement (CBM), or the use of precise, standardized tools to measure accuracy and speed in academic skills (Deno, 1985; Hosp et al., 2016);
- curriculum-based assessment (CBA), which they described as a review of CBM alongside extant data and contexts for measurement (Hosp et al., 2014); and
- curriculum-based evaluation (CBE), which they described as a broad systematic approach to using multiple sources of data collected from meeting psychometric thresholds (Hosp et al., 2014) and entailed a comprehensive approach to the application of both theory and psychometrics resulting in an integrated approach to establishing evidence (Podsakoff et al., 2012).

The effort to establish standards for EBPs for assessment has been met with some resistance. Burns (2016) synthesized seven meta-analyses that used over 200 studies and found a negligible to small effect (ranging from .07 to .58) for cognitive assessments and determining interventions on reading and mathematics improvements. Burns urged that examining cognitive processing data could distract attention from more effective interventions. Although Burns' research appeared extensive, Decker and Luedke (2021) responded to Burns' research, claiming his analysis did not include research that addressed the causal link between cognitive neuropsychological measures and intervention outcomes and urged that changes to special education policy would be premature based on his research. Decker and Luedke appeared to err on the side of caution, perhaps placing a higher standard on evidence that does not support cognitive testing for the identification of learning disabilities than they did on the evidence for theoretical approaches of cognitive testing for learning disabilities.

Several others have also attempted to use the lens of EBPs to recommend the abandonment of theoretical assessment models. Kranzler et al. (2016) conducted a critical analysis of empirical data and concluded that empirical support for the PSW approaches was questionable—necessitating further research to establish its efficacy in the educational setting—and stated concerns that the methods may not consistently or accurately identify SLDs. McGill et al. (2018) concluded in their literature review that while cognitive profile analysis procedures appear appealing, the evidence remains less than compelling when considering empirical research for reliability, validity, and diagnostic utility. Maki et al. (2017) used profiles of student data to ask school psychologists to use various methods (IQ-achievement discrepancy, RTI, and PSW) to interpret the data. They found that identification decisions were inconsistent across three commonly used PSW models and did not result in achievement differences between those identified with an SLD, illustrating a lack of treatment validity (Stuebing et al., 2012).

Responses to these accusations of lack of evidence have been limited (Schneider et al., 2024; Scheider & Kaufman, 2016; Schultz & Stephens-Pisecco, 2019), but the practice of using PSWs continued because proponents of the models claim the use of cognitive measures was based on reason, experience, and indirect scientific evidence (Schneider & Kaufman, 2016). However,

even Schneider and Kaufman (2016), key proponents, argued that they "must not pretend that weak evidence is strong" and called on researchers to "rigorously evaluate their beliefs or concede the argument to those with better evidence" (p. 8). This reaction exemplifies the resistance of special education assessment practices to scientific reform (Dombrowski & McGill, 2024).

Implementation Science as a Framework for Reinforcing EBPs in Assessment

Professionals from various occupations have gradually made stronger commitments to following EBPs as the avenue for adhering to scientific methods and the first step for addressing the gap between research and practice. References to standards for EBPs can be found on the websites of the National Institute for Health Care Excellence (2018), the U.S. Preventative Service Task Force (Trinite et al., 2009), and the National Association of Social Workers (n.d.). In 2014, the Council for Exceptional Children also published a guide for establishing standards for evidence-based practices in special education. Although the guidance from the Council for Exceptional Children only addressed instruction and did not address assessment, it helped usher in the Every Student Succeeds Act (2015) that held researchers responsible for strong levels of evidence especially for interventions for children at risk.

Cook and Odom (2013) discussed the limitations of EBPs in special education and addressed the need to establish implementation science to bridge the gap between research and science. They posited that the cross-disciplinary field of implementation science has great potential for using EBPs to create positive outcomes for children with disabilities. Cook and Odom described implementation science by referring to Glasgow et al. (1999) who provided a RE-AIM (reach, efficacy, adoption, implantation, and maintenance) framework and recognized the efforts of policies to create standards for evidence (i.e., No Child Left Behind, Every Student Succeeds Act, and the What Works Clearinghouse) but warned against leaping "away from the frying pan into the fire" (p. 135), meaning that the effort to adhere to the standards may become so rigidly followed that policy makers lose sight of the goal, which is to improve outcomes. They urged that special education researchers focus less on standards and more on closing gaps between science and practice using implementation science.

Ogden and Fixen (2014) summarized their grounded research to define and describe implementation science. They referred to the definition of implementation science as "the scientific study of methods to promote the systematic uptake of clinical research findings and other evidence-based practices into routine practice" (p. 4). They reported that implementation activities allow professionals to become more skillful and consistent in their practice. Implementation science has evolved to establish many strategies and frameworks. These frameworks attempt to describe the steps or principles needed to effective implementation science (Ogden & Fixen, 2014). They summarized this body of literature by reporting that researchers have concluded that "active, long-term multi-level approaches are more effective than passive forms of dissemination to promote and sustain the use of evidence-based interventions in real-world practice" (Ogden & Fixen, 2014, p. 7).

Common, Clear, and Explicit Language as a Strategy for Bridging Research to Practice

A key principle in implementation science is the development of a common language and well-developed definitions (Ogden & Fixen, 2014). Ogden and Fixen quoted Durlak and DuPre (2008) who stated, "science cannot study what it does not define" (p. 342). In the field of assessment of

SLD, definitions have long been debated. Of the most notable definitions are the IDEA (2004) definition of an SLD, which was debated by the members of the Learning Disability Summit of 2001 (Bradley et al., 2001), and the International Dyslexia Association (IDA) definition of dyslexia, developed under the leadership of Lyon (1995). Researchers of the Learning Disability Summit sought to replace the IQ-achievement discrepancy model of identification by providing examples of other more reliable and valid methods (Bradley et al., 2001). They recognized that they had to come to terms with the reconceptualization of SLD as a conceptualization rather than an operationally defined construct (Bradley et al., 2001). Lyon also referred to the definition of dyslexia that he had developed after 10 years of collaboration with other researchers as a "working definition" (p. 1).

Phillips and Odegard (2017) specifically addressed the IDA definition of dyslexia and IDEA's definition of SLD by describing how specific language included in laws impact policies in literacy. They found that states with dyslexia-specific legislation did not necessarily experience an increase in SLD even though the U.S. Office of Special Education and Rehabilitation Services clarified that dyslexia is a form of SLD to alleviate confusion in the use of multiple terms for the same condition (Phillips & Odegard, 2017). They also found that while dyslexia laws improved awareness, some saw shifts in classification rather than an increase in SLD identification, the intended impact of the dyslexia laws passed (Phillips & Odegard, 2017). Instead, it was the type of legislation, such as early screening and intervention, that led to identification rates better aligned with the prevalence of those reading below grade level (Phillips & Odegard, 2017). They stated concerns about inconsistent diagnostic criteria and how different school districts implemented the laws (Phillips & Odegard, 2017).

The focus of researchers in dyslexia and literacy intervention has moved toward creating a common language and improved definitions. For example, in Tennessee, legislators created the Say Dyslexia Law (Say Dyslexia, 2016), recognizing that by *saying* dyslexia, the law was reinforcing the importance of screening and naming the condition. In Texas, the Beckley Wilson Act (2023) reinforced changes to policy that ensured dyslexia would be identified through a special education evaluation and receive instruction from highly trained teachers. In 2019, the IDA has started to urge researchers to refine their definition of dyslexia (Odegard, 2019). Since that time, several researchers have applied their analysis of the research to recommend definitions that are more inclusive and better aligned with EBPs for SLD assessment (Odegard et al., 2024). Beyond state laws and definitions, states also provide guidance documents to further clarify the language of the policies. The language used in these documents is crucial for effective implementation.

Part III: Texas Guidance Documents and Their Alignment with EBPs

In the last 5 years, Texas has experienced rapidly changing guidance regarding the way evaluators should conduct special education evaluations for SLD or dyslexia. In the fall of 2021, the Texas Administrative Code (19 Tex. Admin. Code § 89.1040, 2024; Texas Education Agency [TEA], 2021b) was changed to remove "significant variance," and the new guidance stated, "you do not need significant variance among specific areas of cognitive functioning or between specific areas of cognitive function and academic achievement" (TEA, 2021b, 19:00).

Recent Improvements to the Language Provided in Texas Guidance Documents

TEA (2018, 2021a, 2024) introduced three *Dyslexia Handbooks*, and each handbook was later accompanied by a Frequently Asked Questions section (cf. TEA, 2024). In October 2023, Texas introduced a guidance document titled *Guidance for the Comprehensive Evaluation of Specific Learning Disabilities* (TEA, 2023). This document was expanded in January 2025 to include more specific descriptions of the type of analysis of data needed to determine the diagnosis of specific learning disabilities including dyslexia (TEA, 2025). The introduction of these five documents in the last 7 years reflects a dedication to improving the language of the guidance provided. However, some language that continues in these documents may also reflect a resistance to fully embrace EBPs in assessment. While TEA (2025) did place a greater emphasis on the use of CBM and multiple measures as important to the evaluation process, it continued to refer to the PSW models as acceptable interpretive models to use despite the lack of evidence to support them.

Recommendations for Additional Improvements to Texas Guidance Documents

Based on this review of the literature and an effort to encourage the use of common language as a strategy to improve implementation in line with EBPs, some recommendations for changes to the TEA guidance documents are proposed. These recommendations highlight the importance of specific and precise language in the context of a history of practices that lack evidence. The recommendations for the change in language would help bring diagnosticians' practice in line with the evidence in research for diagnosing learning disabilities.

The first recommendation is to be clear about the method that policy makers want diagnosticians to use, to be consistent in that message, and to base that guidance on evidence. TEA (2024) did not clearly state which interpretive model to use, but a comparison between this handbook and the literature leads to the conclusion that the recommendation is to use a component-based model of dyslexia as suggested by Aaron et al. (2008), but research by Catts et al. (2017) and others (Pennington et al., 2012; Steacy et al., 2018) provided evidence that no single cognitive processing correlate or combination of correlates sufficiently predicts the reading achievement of students to reduce academic risk.

Additionally, TEA (2025) did not describe a component-based model. Instead, this document specifically mentioned an RTI method (pp. 38–40) or a PSW method (pp. 40–43), leaving no room for a component-based method. TEA (2025) described PSW conceptually, giving examples of patterns, but did not explicitly explain how their description is different or if it is different from the PSW methods described in research; it does not appear to consider that practitioners understand the term as a model rather than a simple concept. Furthermore, the reference to PSW as a method (TEA, 2025, p. 40) reinforces the idea that PSW refers to methods of cognitive processing difference models, which lacks evidence (cf. Fletcher & Miciak, 2019). The reference to a PSW method is also problematic because all PSW models require the identification of a cognitive weakness on an IQ test, but the TEA (2024) stated, "it is not required that a student demonstrate a specific cognitive weakness on standardized assessments, as demonstrated by achieving below a certain threshold to otherwise display a pattern of strengths and weaknesses relevant to the identification of dyslexia" (p. 73). A similar quote can be found in TEA (2025, pp. 44–45). A simple solution for improving the clarity of the guidance regarding the interpretive method or model recommended would be to remove any reference to a PSW method

from TEA (2025) as it does not align with the evidence (Fletcher & Miciak, 2019; Fletcher et al., 2011; Kranzler et al., 2016; Maki et al., 2017; Miciak et al., 2014).

A second recommendation is to remove the 2001 IDA definition from TEA (2024). Terms included in the definition such as "unexpected in relation to other cognitive abilities" (TEA, 2024, p. 7) appeared to refer to cognitive difference models and do not alert the reader that the IDA is currently attempting to replace their over 20-year-old definition with a more inclusive definition. The word "cognitive" is mentioned 14 times in TEA (2024). Although references to cognitive processes are sometimes referred to as evidence of the cause of dyslexia, researchers agree that cognitive processes as measured by formal psychoeducational assessments are not evidence of cause but rather a correlation that signifies risk (Catts et al., 2017; Catts & Petscher, 2022; Mather & Wendling, 2012). Understanding the difference between causal and correlational relationships in assessment is important to developing critical decision-making when performing an evidence-based assessment (Dombrowski, 2020). The absence of this distinction is a lost opportunity for diagnosticians to develop better critical thinking skills when evaluating students with the various cognitive abilities of students with dyslexia.

The third recommendation is to combine TEA (2024) with TEA (2025). Dyslexia is an SLD and should not need its own handbook. In the TEA (2025) section on dyslexia (pp. 44–46), references to cognitive processing skills such as rapid naming and phonological awareness, while important correlates of dyslexia that provide probability of risk, are emphasized over the importance of an unexpected lack of response to intervention and the importance of progress monitoring. Emphasis on cognitive processing skills over response to intervention also undermines resiliency that many children with risks for dyslexia demonstrate when given the proper supports (Catts & Petscher, 2022).

A final recommendation is to highlight the importance of using data from CBM, CBA, and CBE as well as norm-referenced psychoeducational academic assessments in place of theoretical models, similar to PSWs, that lack evidence (Fletcher & Miciak, 2019; Fletcher et al., 2011; Kranzler et al., 2016; Maki et al., 2017; Miciak et al., 2014). The use of CBM, CBA, and CBE is key to defining EBPs in assessment and improving the evaluation of SLDs. In the wake of the *Endrew F*. (2017) decision, researchers considered the research evidence and referred to CBM as important assessment tools for setting the standard of progress (Zirkel & Yell, 2023). The National Center on Intensive Intervention (n.d.) helped establish a resource of evidence-based assessments by providing lists of screeners and progress monitoring assessments along with their evidence of reliability and validity. While several studies established evidence that cognitive processing models lack content validity or interpractitioner reliability, CBM, CBA, and CBE help practitioners reliably identify students in need promptly, efficiently, and accurately to achieve the intended outcome: reducing educational risk for needing increased special education services by driving instruction rather than just providing a label.

Conclusion

A review of literature related to research-based methods for the diagnosis of dyslexia or other learning disabilities illustrates a long history of practices that lack evidence. To reduce educational risk, educational professionals are encouraged to use EBPs both when providing instruction to students with learning disabilities but also when assessing for disabilities. While many positive changes to several sources of guidance such as TEA (2024) and TEA (2023, 2025) have undergone revisions to better inform evaluators of specific learning disabilities, dyslexia, and related

disorders, additional revisions are needed to align this guidance with evidence-based assessment processes. After reviewing the literature, I propose that additional changes be considered to address consistent messages and misleading language that hearkens back to methods that are not EBPs as well as detract from a focus on the benefits of interventions in preventing educational risk. These include removing references to interpretive models similar to PSW models, removing the IDA definition, combining guidance documents to communicate that dyslexia is also a learning disability, and bringing greater attention to the importance of analysis of CBM and CBA.

References

- 19 Tex. Admin. Code § 89.1040 (2024).
- Aaron, P. G., Joshi, R. M., Gooden, R., & Bentum, K. E. (2008). Diagnosis and treatment of reading disabilities based on the component model of reading: An alternative to the discrepancy model of LD. *Journal of Learning Disabilities*, 41(1), 67–84. https://doi.org/10.1177/0022219407310838
- Beckley Wilson Act, TX HB 3928, 88th Leg., R.S. (2023).
- Benson, N. F., Beaujean, A., McGill, R. J., & Dombrowski, S. C. (2018). Critique of the coreselective evaluation process. *The Dialog*, 47(2), 14-18.
- Benson, N. F., Maki, K. E., Floyd, R. G., Eckert, T. L., Kranzler, J. H., & Fefer, S. A. (2020). A national survey of school psychologists' practices in identifying specific learning disabilities. *School Psychology*, *35*(2), 146–157. https://doi.org/10.1037/spq0000344
- Board of Education of the Hendrick Hudson Central School District v. Rowley, 458 U.S. 176 (1982).
- Bradley, R., Danielson, L., & Hallahan, D. P. (2001). *Identification of learning disabilities:* Research to practice. Lawrence Erlbaum Associates.
- Burns, M. K. (2016). Effect of cognitive processing assessments and interventions on academic outcomes: Can 200 studies be wrong? *Communiqué*, 44(5), 25–29. https://eric.ed.gov/?id=EJ1201089
- Burns, M. K., Riley-Tillman, T. C., & Rathvon, N. (2017). *Effective school interventions:* Evidence-based strategies for improving student outcomes. Guilford Publications.
- Catts, H. W., McIlraith, A., Bridges, M. S., & Nielsen, D. C. (2017). Viewing a phonological deficit within a multifactorial model of dyslexia. *Reading and Writing*, *30*, 613–629. https://doi.org/10.1007/s11145-016-9692-2
- Catts, H. W. & Petscher, Y. (2022). A cumulative risk and resilience model of dyslexia. *Journal of Learning Disabilities*, 55(3), 171–184. https://doi.org/10.1177/00222194211037062
- Cook, B. G., & Odom, S. L. (2013). Evidence-based practices and implementation science in special education. *Exceptional children*, 79(2), 135–144. https://doi.org/10.1177/001440291307900201
- Council for Exceptional Children (2014). Standards for evidence-based practices in special education. *TEACHING Exceptional Children*, 46(6), 206–212. https://doi.org/10.1177/0040059914553203
- Decker, S. L., & Luedke, J. C. (2021). Evidence-based use of cognitive testing for academic interventions: A critical appraisal of meta-analytic methodologies. *Frontiers in Education*, 6. https://doi.org/10.3389/feduc.2021.637676
- Deno, S. L. (1985). Curriculum-based measurement: The emerging alternative. *Exceptional Children*, 52(3), 219–232. https://doi.org/10.1177/001440298505200303

- Dehn, M. J. (2013). Enhancing SLD diagnosis through the identification of psychological processing deficits. *The Australian Educational and Developmental Psychologist*, 30(2), 119–139. https://doi.org/10.1017/edp.2013.19
- Dombrowski, S. C. (2020). *Psychoeducational assessment and report writing* (2nd ed.). Springer. Dombrowski, S. C., Kamphaus, R. W., & Reynolds, C. R. (2004). After the demise of the discrepancy: Proposed learning disabilities diagnostic criteria. *Professional Psychology: Research and Practice*, *35*(4), 364–372. https://psycnet.apa.org/doi/10.1037/0735-7028.35.4.364
- Dombrowski, S. C., & McGill, R. J. (2024). Clinical assessment in school psychology: Impervious to scientific reform? *Canadian Journal of School Psychology*, 39(4), 297–306. https://doi.org/10.1177/08295735231224052
- Dombrowski, S. C., McGill, R., J., Farmer, R. L., Kranzler, J. H., & Canivez, G. L. (2021). Beyond the rhetoric of evidence-based assessment: A framework for critical thinking in clinical practice. *School Psychology Review*, 51(6), 771–784. https://doi.org/10.1080/2372966X.2021.1960126
- Durlak, J. A., & DuPre, E. P. (2008). Implementation matters: A review of research on the influence of implementation on program outcomes and the factors affecting implementation. *American Journal of Community Psychology*, *41*, 327–350. https://doi.org/10.1007/s10464-008-9165-0
- Endrew F. v. Douglas County School District, 580 U.S. 15-827 (2017).
- Every Student Succeeds Act, 20 U.S.C. § 6301 (2015).
- Flanagan, D. P., Fiorello, C. A., & Ortiz, S. O. (2010). Enhancing practice through application of Cattell-Horn-Carroll theory in research: A "third method" approach to specific learning disability identification. *Psychology in Schools* 47(7), 739–760. https://doi.org/10.1002/pits.20501
- Fletcher, J. M., Coulter, W. A., Reschly, D. J., & Vaughn, S. (2004). Alternative approaches to the definition and identification of learning disabilities: Some questions and answers. *Annals of Dyslexia* 54, 304–331. https://doi.org/10.1007/s11881-004-0015-y
- Fletcher, J. M., Francis, D. J., Morris, R. D., & Lyon, G. R. (2005). Evidence-based assessment of learning disabilities in children and adolescents. *Journal of Clinical Child and Adolescent Psychology*, *34*(3), 506–522. https://doi.org/10.1207/s15374424jccp3403_7
- Fletcher, J. M., Lyon, G. R., Barnes, M., Stuebing, K. K., Francis, D. J., Olson, R. K., Shaywitz, S. E., & Shaywitz, B. A. (2002). Classification of learning disabilities: An evidence-based evaluation. In R. Bradley, L. Danielson, & D. P. Hallahan (Eds.), *Identification of learning disabilities: Research to practice* (pp. 185–250). Lawrence Erlbaum Associates Publishers.
- Fletcher, J. M., & Miciak, J. (2019). *The identification of specific learning disabilities: A summary of research on best practices*. Texas Center for Learning Disabilities. https://texasldcenter.org/wp-content/uploads/2019/11/SLD-Manual_Final.pdf
- Fletcher, J. M., Stuebing, K. K., Barth, A. E., Denton, C. A., Cirino, P. T., Francis, D. J., & Vaughn, S. (2011). Cognitive correlates of inadequate response to reading intervention. *School Psychology Review*, 40(1), 3–22. https://pmc.ncbi.nlm.nih.gov/articles/PMC3485697/
- Fuchs, L. S., Fuchs, D., & Speece, D. L. (2002). Treatment validity as a unifying construct for identifying learning disabilities. *Learning Disability Quarterly*, 25(1), 33–45. https://doi.org/10.2307/1511189
- Hale, J., Alfonso, V., Berninger, V., Bracken, B., Christo, C., Clark, E., Cohen, M., Davis, A., Decker, S., Denckla, M., Dumont, R., Elliott, C., Feifer, S., Fiorello, C., Flanagan, D.,

- Fletcher-Janzen, E., Geary, D., Gerber, M., Gerner, M., . . . Yalof, J. (2010). Critical issues in response-to-intervention, comprehensive evaluation, and specific learning disabilities identification and intervention: An expert white paper consensus. *Learning Disability Quarterly*, 33(3), 223–236. https://doi.org/10.1177/073194871003300310
- Hosp, J., Hosp, M. K., Howell, K. W., & Allison, R. (2014). *The ABCs of curriculum-based evaluation*. Guilford Press.
- Hosp, J., Howell, K. W., & Hosp, M. K. (2016). *The ABCs of CBM* (2nd ed.). Guilford Press. Individuals with Disabilities Education Act, 20 U.S.C. § 1400 (2004).
- Kranzler, J. H., Floyd, R. G., Benson, N., Zaboski, B., & Thibodaux, L. (2016). Classification agreement analysis of cross-battery assessment in the identification of specific learning disorders in children and youth. *International Journal of School & Educational Psychology*, *4*(3), 124–136. https://doi.org/10.1080/21683603.2016.1155515
- Kranzler, J. H., Yaraghchi, M., Matthews, K., & Otero-Valles, L. (2020). Does the response-to-intervention model fundamentally alter the traditional conceptualization of specific learning disability? *Contemporary School Psychology*, 24, 80–88. https://doi.org/10.1007/s40688-019-00256-x
- Kirk, S., & Bateman, B. (1962). Diagnosis and remediation of learning disabilities. *Exceptional Children*, 29(2), 73–78. https://doi.org/10.1177/001440296202900204
- Lilienfeld, S., Ammirati, R., & David, M. (2012). Distinguishing science from pseudoscience in school psychology: Science and scientific thinking as safeguards against human error. *Journal of School Psychology*, 50, 7–36. https://doi.org/10.1016/j.jsp.2011.09.006
- Lyon, R. (1995). Toward a definition of dyslexia. *Annals of Dyslexia*, 45, 1–27.
- Maki, K. E., Burns, M. K., & Sullivan, A. (2017). Learning disability identification consistency: The impact of methodology and student evaluation data. *School Psychology Quarterly*, 32(2), 254–267. https://doi.org/10.1037/spq0000165
- Mather, N., & Gregg, N. (2006). Specific learning disabilities: Clarifying, not eliminating, a construct. *Professional Psychology: Research and Practice*, *37*(1), 99–106. https://doi.org/10.1037/0735-7028.37.1.99
- Mather, N., & Schneider, D. (2023). The use of cognitive tests in the assessment of dyslexia. *Journal of Intelligence*, 11(5), 79–100. https://doi.org/10.3390/jintelligence11050079
- Mather, N., & Wendling, B. J. (2012). *Essentials of dyslexia assessment and intervention*. John Wiley & Sons.
- McGill, R., Dombrowski, S., & Canivez, G. (2018). Cognitive profile analysis in school psychology: History, issues, and continued concerns. *Journal of School Psychology*, 71, 108–121. https://doi.org/10.1016/j.jsp.2018.10.007
- Miciak, J., Fletcher, J. M., Stuebing, K. K., Vaughn, S., & Tolar, T. D. (2014). Patterns of cognitive strengths and weaknesses: Identification rates, agreement, and validity for learning disabilities identification. *School Psychology Quarterly*, 29(1), 21–37. https://doi.org/10.1037/spq0000037
- Miller, D. C., Maricle, D. E., & Jones, A. M. (2016). Comparing three patterns of strengths and weaknesses models for the identification of specific learning disabilities. *Learning Disabilities*, 21(2), 31–45. https://doi.org/10.18666/LDMJ-2016-V21-I2-7349
- National Association of Social Workers. (n.d.). *Evidence-based practice*. https://www.socialworkers.org/News/Research-Data/Social-Work-Policy-Research/Evidence-Based-

- Practice#:~:text=In%20social%20work%2C%20most%20agree,evidence%2C%20and%20evaluating%20the%20effectiveness
- National Center on Intensive Intervention. (n.d.). *Academic screening tools chart*. IntensiveIntervention.org. Retrieved September, 9, 2025, from https://charts.intensiveintervention.org/ascreening
- National Institute for Health and Care Excellence. (2018). *Principles for putting evidence-based guidance into practice*. https://www.nice.org.uk/Media/Default/About/what-we-do/Into-practice/Principles-for-putting-evidence-based-guidance-into-practice.pdf
- Ogden, T., & Fixsen, D. L. (2014). Implementation science: A brief overview and a look ahead. *Zeitschrift Für Psychologie*, 222(1), 4–11. https://doi.org/10.1027/2151-2604/a000160
- Odegard, T. (2019). Dyslexia defined: Historical trends and the current reality. *Perspectives on Language and Literacy*, 45(1), 7–9. http://www.onlinedigeditions.com/publication/?i=572951&p=3&view=issueViewer
- Odegard, T., Farris, E., & Middleton, A. (2024). Special issue: Dyslexia in the 21st century: Revisiting the consensus definition. *Annals of Dyslexia*, 74(3), 273–281. https://doi.org/10.1007/s11881-024-00316-9
- Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. *Cognition*, 101(2), 385–413. https://doi.org/10.1016/j.cognition.2006.04.008
- Pennington, B. F., Santerre-Lemmon, L., Rosenberg, J., MacDonald, B., Boada, R., Friend, A., Leopold, D. R., Samuelsson, S., Byrne, B., Willcutt, E. G., & Olson, R. K. (2012). Individual prediction of dyslexia by single versus multiple deficit models. *Journal of Abnormal Psychology*, 121, 212–224. https://doi.org/10.1037/a0025823
- Phillips, B. A. B., Odegard, T. N. (2017). Evaluating the impact of dyslexia laws on the identification of specific learning disability and dyslexia. *Annals of Dyslexia*, 67, 356–368. https://doi.org/10.1007/s11881-017-0148-4
- Podsakoff, N. P., Podaskoff, P. M., Mackenzie, S. B., & Klinger, R. L. (2012). Are we really measuring what we say we're measuring? Using video techniques to supplement traditional construct validation procedures. *Journal of Applied Psychology*, 98(1), 99–113. https://doi.org/10.1037/a0029570
- Say Dyslexia Law. Tennessee Code Annotated § 49-1-229. (2016).
- Schneider, W. J., Flanagan, D. P., Niileksela, C. R., & Engler, J. R. (2024). The effect of measurement error on the positive value of PSW methods for SLD identification: How buffer zones dispel the illusion of inaccuracy. *Journal of School Psychology*, *103*, Article 101280. https://doi.org/10.1016/j.jsp.2023.101280
- Schneider, W. J., & Kaufman, A. S. (2016). Let's not do away with comprehensive cognitive assessments just yet. *Journal of the National Academy of Neuropsychologists*, 32(1), 8–20. https://doi.org/10.1093/arclin/acw104
- Schultz, E. K., & Stephens, T. L. (2015). Core-selective evaluation process: An efficient and comprehensive approach to identify students with SLD using the WJ IV. *The Dialog*, 44(2), 5–12. https://cseponline/documents.html
- Schultz, E., & Stephens-Pisecco, T. (2019). Exposing educational propaganda: A response to Benson et al. (2018) "critique" of C-SEP. *The Dialog*, 48(1), 10–16.
- Shaywitz, S. E., Escobar, M. D., Shaywitz, B. A., Fletcher, J. M., & Makuch, R. (1992). Evidence that dyslexia may represent the lower tail of the normal distribution of reading ability. *New England Journal of Medicine*, 326, 145–150. https://doi.org/10.1056/NEJM199201163260301

- Steacy, L. M., Compton, D. L., Petscher, Y., Elliott, J. D., Smith, K., Rueckl, J., Sawi, O., Frost, S., & Pugh, K. (2018). Development and prediction of context-dependent vowel pronunciation in elementary readers. *Scientific Studies of Reading*, 23, 49–63. https://doi.org/10.1080/10888438.2018.1466303
- Stuebing, K. K., Fletcher, J. M., Branum-Martin, L., Francis, D. J., & Van Der Heyden, A. (2012). Evaluation of the technical adequacy of three methods for identifying specific learning disabilities based on cognitive discrepancies. *School Psychology Review*, 41(1), 3–22. https://doi.org/10.1080/02796015.2012.12087373
- Talbott, E., De Los Reyes, A., Kearns, D. M., Mancilla-Martinez, J., & Wang, M. (2023). Evidence-based assessment in special education research: Advancing the use of evidence in assessment tools and empirical processes. *Exceptional Children*, 89(4), 467–487. https://doi.org/10.1177/00144029231171092
- Texas Education Agency. (2018). The dyslexia handbook: Procedures concerning dyslexia and related disorders.
- Texas Education Agency. (2021a). The dyslexia handbook update: Procedures concerning dyslexia and related disorders.
- Texas Education Agency. (2021b, September 23). *Special education director webinar* [Video]. YouTube. https://www.youtube.com/watch?v=zIOpBFxxA34
- Texas Education Agency. (2024). *The dyslexia handbook update: Procedures concerning dyslexia and related disorders*. https://tea.texas.gov/academics/special-student-populations/special-education/texas-dyslexia-handbook.pdf
- Texas Education Agency. (2023). Guidance for the comprehensive evaluation of specific learning disabilities.
- Texas Education Agency. (2025). *Guidance for the comprehensive evaluation of specific learning disabilities*. https://spedsupport.tea.texas.gov/resource-library/guidance-comprehensive-evaluation-specific-learning-disabilities
- Trinite, T., Loveland-Cherry, C., & Marion, L. (2009). The U.S. Preventive Services Task Force: An evidence-based prevention resource for nurse practitioners. *The Journal of the American Academy of Nurse Practitioners*, 21, 301–306. https://www.uspreventiveservicestaskforce.org/uspstf/sites/default/files/inline-files/epbnursep.pdf
- Ysseldyke, J. E., Chaparro, E. A., & VanDerHeyden, A. M. (2023). Assessment in special education (14th ed.). Pro Ed.
- Ysseldyke, J. E., Reynolds, M., & Weinberg, R. A. (1984). *School psychology: A blueprint for training and practice*. National School Psychology Inservice Training Network.
- Wagner, R. K., Moxley, J., Schatschneider, C., & Zirps, F. A. (2022). A Bayesian probabilistic framework for identification of individuals with dyslexia. *Scientific Studies of Reading*, 27(1), 67–81. https://doi.org/10.1080/10888438.2022.2118057
- Woodcock, R. W., Miller, D. C., Maricle, D. E., & McGill, R. J. (2017). Evidence-based selective assessment for academic disorders. School Neurosych Press.
- Zirkel, P. A. & Yell, M. L. (2023). Indicators of progress in the wake of Endrew F.: The distinction between professional recommendations and judicial rulings. *Exceptional Children*, 90(2), 110–125. https://doi.org/10.1177/00144029231165500